Wind mass transfer in S-type symbiotic binaries

Author:

Shagatova N.ORCID,Skopal A.,Shugarov S. Yu.,Komžík R.ORCID,Kundra E.ORCID,Teyssier F.

Abstract

Context. The structure of the wind from the cool giants in symbiotic binaries carries important information for understanding the wind mass transfer to their white dwarf companions, its fuelling, and thus the path towards different phases of symbiotic-star evolution. Aims. In this paper, we indicate a non-spherical distribution of the neutral wind zone around the red giant (RG) in the symbiotic binary star, EG And. We concentrate in particular on the wind focusing towards the orbital plane and its asymmetry alongside the orbital motion of the RG. Methods. We achieved this aim by analysing the periodic orbital variations of fluxes and radial velocities of individual components of the Hα and [O III] λ5007 lines observed on our high-cadence medium (R ∼ 11 000) and high-resolution (R ∼ 38 000) spectra. Results. The asymmetric shaping of the neutral wind zone at the near-orbital-plane region is indicated by: (i) the asymmetric course of the Hα core emission fluxes along the orbit; (ii) the presence of their secondary maximum around the orbital phase φ = 0.1, which is possibly caused by the refraction effect; and (iii) the properties of the Hα broad wing emission originating by Raman scattering on H0 atoms. The wind is substantially compressed from polar directions to the orbital plane as constrained by the location of the [O III] λ5007 line emission zones in the vicinity of the RG at/around its poles. The corresponding mass-loss rate from the polar regions of ≲10−8 M yr−1 is a factor of ≳10 lower than the average rate of ≈10−7 M yr−1 derived from nebular emission of the ionised wind from the RG. Furthermore, it is two orders of magnitude lower than that measured in the near-orbital-plane region from Rayleigh scattering. Conclusions. The startling properties of the nebular [O III] λ5007 line in EG And provides an independent indication of the wind focusing towards the orbital plane – the key to understanding the efficient wind mass transfer in symbiotic binary stars.

Funder

Slovak Research and Development Agency

Slovak Academy of Sciences

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3