Preprocessing of vector magnetograms for magnetohydrostatic extrapolations

Author:

Zhu X.,Wiegelmann T.,Inhester B.

Abstract

Context. Understanding the 3D magnetic field as well as the plasma in the chromosphere and transition region is important. One way is to extrapolate the magnetic field and plasma from the routinely measured vector magnetogram on the photosphere based on the assumption of the magnetohydrostatic (MHS) state. However, photospheric data may be inconsistent with the MHS assumption. Therefore, we must study the restriction on the photospheric magnetic field, which is required by the MHS system. Moreover, the data should be transformed accordingly before MHS extrapolations can be applied. Aims. We aim to obtain a set of surface integrals as criteria for the MHS system and use this set of integrals to preprocess a vector magnetogram. Methods. By applying Gauss’ theorem and assuming an isolated active region on the Sun, we related the magnetic energy and forces in the volume to the surface integral on the photosphere. The same method was applied to obtain restrictions on the photospheric magnetic field as necessary criteria for a MHS system. We used an optimization method to preprocess the data to minimize the deviation from the criteria as well as the measured value. Results. By applying the virial theorem to the active region, we find the boundary integral that is used to compute the energy of a force-free field usually underestimates the magnetic energy of a large active region. We also find that the MHS assumption only requires the x-, y-component of net Lorentz force and the z-component of net torque to be zero. These zero components are part of Aly’s criteria for a force-free field. However, other components of net force and torque can be non-zero values. According to new criteria, we preprocess the magnetogram to make it more consistent with the MHS system and, at the same time close, to the original data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3