Cyanogen, cyanoacetylene, and acetonitrile in comet 67P and their relation to the cyano radical

Author:

Hänni N.,Altwegg K.,Balsiger H.,Combi M.ORCID,Fuselier S. A.,De Keyser J.ORCID,Pestoni B.ORCID,Rubin M.ORCID,Wampfler S. F.

Abstract

The cyano radical (CN) is one of the most frequently remotely observed species in space, and is also often observed in comets. Data for the inner coma of comet 67P/Churyumov-Gerasimenko collected by the high-resolution Double Focusing Mass Spectrometer (DFMS) on board the Rosetta orbiter revealed an unexpected chemical complexity, and, recently, also more CN than expected from photodissociation of its most likely parent, hydrogen cyanide (HCN). Here, we derive abundances relative to HCN of three cometary nitriles (including structural isomers) from DFMS data. Mass spectrometry of complex mixtures does not always allow isolation of structural isomers, and therefore in our analysis we assume the most stable and abundant (in similar environments) structure, that is HCN for CHN, CH3CN for C2H3N, HC3N for C3HN, and NCCN for C2N2. For cyanoacetylene (HC3N) and acetonitrile (CH3CN), the complete mission time-line was evaluated, while cyanogen (NCCN) was often below the detection limit. By carefully selecting periods where cyanogen was above the detection limit, we were able to follow the abundance ratio between NCCN and HCN from 3.16 au inbound to 3.42 au outbound. These are the first measurements of NCCN in a comet. We find that neither NCCN nor either of the other two nitriles is sufficiently abundant to be a relevant alternative parent to CN.

Funder

Swiss National Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3