Stellar wind structures in the eclipsing binary system IGR J18027–2016

Author:

Fogantini Federico A.,García Federico,Combi Jorge A.,Chaty Sylvain

Abstract

Context. IGR J18027–2016 is an obscured high-mass X-ray binary formed by a neutron star accreting from the wind of a supergiant companion with a ∼4.57 d orbital period. The source shows an asymmetric eclipse profile that remained stable across several years. Aims. We aim to investigate the geometrical and physical properties of stellar wind structures formed by the interaction between the compact object and the supergiant star. Methods. In this work we analysed the temporal and spectral evolution of this source along its orbit using six archival XMM-Newton observations and the accumulated Swift/BAT hard X-ray light curve. Results. The XMM-Newton light curves show that the source hardens during the ingress and egress of the eclipse, in accordance with the asymmetric profile seen in Swift/BAT data. A reduced pulse modulation is observed on the ingress to the eclipse. We modelled XMM-Newton spectra by means of a thermally Comptonized continuum (NTHCOMP), adding two Gaussian emission lines corresponding to Fe Kα and Fe Kβ. We included two absorption components to account for the interstellar and intrinsic media. We found that the local absorption column outside the eclipse fluctuates uniformly around ∼6 × 1022 cm−2, whereas when the source enters and leaves the eclipse the column increases by a factor of ≳3, reaching values up to ∼35 and ∼15 × 1022 cm−2, respectively. Conclusions. Combining the physical properties derived from the spectral analysis, we propose a scenario in which, primarily, a photo-ionisation wake and, secondarily, an accretion wake are responsible for the orbital evolution of the absorption column, continuum emission, and variability seen at the Fe-line complex.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3