The first GeV flare of the radio-loud narrow-line Seyfert 1 galaxy PKS 2004–447

Author:

Gokus A.ORCID,Paliya V. S.,Wagner S. M.,Buson S.,D’Ammando F.,Edwards P. G.,Kadler M.,Meyer M.,Ojha R.,Stevens J.,Wilms J.

Abstract

Context. On 2019 October 25, the Fermi-Large Area Telescope observed the first ever γ-ray flare from the radio-loud narrow-line Seyfert 1 galaxy PKS 2004−447 (z = 0.24). Prior to this discovery, only four sources of this type had shown a flare at gigaelectronvolt energies. Aims. We report on follow-up observations in the radio, optical-UV, and X-ray bands that were performed by ATCA, the Neil Gehrels Swift Observatory, XMM-Newton, and NuSTAR, respectively, and analyse these multi-wavelength data with a one-zone leptonic model in order to understand the physical mechanisms that were responsible for the flare. Methods. We study the source’s variability across all energy bands and additionally produce γ-ray light curves with different time binnings to study the variability in γ-rays on short timescales during the flare. We examine the combined X-ray spectrum from 0.5 to 50 keV by describing the spectral shape with an absorbed power law. We analyse multi-wavelength datasets before, during, and after the flare and compare these with a low activity state of the source by modelling the respective spectral energy distributions (SEDs) with a one-zone synchrotron inverse Compton radiative model. Finally, we compare the variability and the SEDs to γ-ray flares previously observed from other γ-loud narrow-line Seyfert 1 galaxies. Results. At γ-ray energies (0.1−300 GeV) the flare reached a maximum flux of (1.3 ± 0.2) × 10−6 ph cm−2 s−1 in daily binning and a total maximum flux of (2.7 ± 0.6) × 10−6 ph cm−2 s−1 when a 3 h binning was used. With a photon index of Γ0.1−300 GeV = 2.42 ± 0.09 during the flare, this corresponds to an isotropic γ-ray luminosity of (2.9 ± 0.8) × 1047 erg s−1. The γ-ray, X-ray, and optical-UV light curves that cover the end of September to the middle of November show significant variability, and we find indications for flux-doubling times of ∼2.2 h at γ-ray energies. The soft X-ray excess, which is observed for most narrow-line Seyfert 1 galaxies, is not visible in this source. During the flare, the SED exhibits large Compton dominance. While the increase in the optical-UV range can be explained by enhanced synchrotron emission, the elevated γ-ray flux can be accounted for by an increase in the bulk Lorentz factor of the jet, similar to that observed for other flaring γ-ray blazars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3