Warm ISM in the Sgr A complex

Author:

García P.ORCID,Abel N.ORCID,Röllig M.ORCID,Simon R.,Stutzki J.ORCID

Abstract

Context. The Arches Cluster – Arched Filaments (AF) system is our Galaxy’s prime example of the complexity involved in the interaction between the strong radiation field of numerous OB stars and their surrounding ISM in extremely harsh environments such as the Galactic center (GC) of the Milky Way. It offers a unique opportunity to study the close relationship between photon-dominated regions (PDRs) and H II regions and their relative contributions to the observed [CII] emission. Aims. We aim to investigate the I([CII]) versus I([NII]) integrated intensity behavior in the AF region in order to assess the [CII] emission contribution from the H II region, which is traced by [NII] line observations, and PDR components in the high-metallicity environment of the GC. Methods. We used [CII] 158 μm and [NII] 205 μm fine structure line observations of the AF in the literature to compare their observational integrated intensity distribution to semi-theoretical predictions for the contribution of H II regions and adjacent PDRs to the observed [CII] emission. We explored variations in the [C/N] elemental abundance ratio to explain the overall behavior of the observed relationship. Based on our models, the H II region and PDR contributions to the observed [CII] emission is calculated for a few positions within and near to the AF. Estimates for the [C/N] abundance ratio and [N/H] nitrogen elemental abundance in the AF can then be derived. Results. The behavior of the I([CII]) versus I([NII]) relationship in the AF can be explained by model results satisfying 0.84 < [C/N]AF < 1.41, with model metallicities ranging from 1 Z to 2 Z, hydrogen volume density log n(H) = 3.5, and ionization parameters log U from −1 to −2. A least-squares fit to the model data points yields log I([CII]) = 1.068 × log I([NII]) + 0.645 to predict the [CII] emission arising from the H II regions in the AF. The fraction of the total observed [CII] emission arising from within PDRs varies between ~0.20 and ~0.75. Our results yield average values for the carbon-to-nitrogen ratio and nitrogen elemental abundances of [C/N]AF = 1.13 ± 0.09 and [N/H]AF = 6.21 × 10−4 for the AF, respectively. They are a factor of ~0.4 smaller and ~7.5 larger than their corresponding Galactic disk values. Conclusions. The large spatial variation of the fraction of [CII] emission arising either from H II regions or PDRs suggests that both contributions must be disentangled before any modeling attempt is made to explain the observed [CII] emission in the AF. We suggest thatsecondary production of nitrogen from low- to intermediate-mass stars in the Galactic bulge is a plausible mechanism to explain the large abundance differences between the GC and the Galactic disk. The mass loss of such stars would enrich the GC ISM with nitrogen as the gas falls into the inner GC orbits where the AF are located. Overall, our results show that tight constraints are needed on the [C/N] abundance ratio for the GC, significantly tighter than previous abundance measurements have discerned.

Funder

Comisión Nacional de Ciencia y Tecnología (CONICYT) via Project FONDECYT de Iniciación

Chinese Academy of Sciences (CAS), through a grant to the CAS South America Center for Astronomy

Collaborative Research Centre 956, sub-project A5, funded by the Deutsche Forschungsgemeinschaft

Agence National de Recherche (ANR) and the german Deutsche Forschungsgemeinschaft (DFG) through the project

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3