A random forest-based selection of optically variable AGN in the VST-COSMOS field

Author:

De Cicco D.ORCID,Bauer F. E.,Paolillo M.,Cavuoti S.,Sánchez-Sáez P.,Brandt W. N.,Pignata G.,Vaccari M.,Radovich M.

Abstract

Context. The survey of the COSMOS field by the VLT Survey Telescope is an appealing testing ground for variability studies of active galactic nuclei (AGN). With 54 r-band visits over 3.3 yr and a single-visit depth of 24.6 r-band mag, the dataset is also particularly interesting in the context of performance forecasting for the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST). Aims. This work is the fifth in a series dedicated to the development of an automated, robust, and efficient methodology to identify optically variable AGN, aimed at deploying it on future LSST data. Methods. We test the performance of a random forest (RF) algorithm in selecting optically variable AGN candidates, investigating how the use of different AGN labeled sets (LSs) and features sets affects this performance. We define a heterogeneous AGN LS and choose a set of variability features and optical and near-infrared colors based on what can be extracted from LSST data. Results. We find that an AGN LS that includes only Type I sources allows for the selection of a highly pure (91%) sample of AGN candidates, obtaining a completeness with respect to spectroscopically confirmed AGN of 69% (vs. 59% in our previous work). The addition of colors to variability features mildly improves the performance of the RF classifier, while colors alone prove less effective than variability in selecting AGN as they return contaminated samples of candidates and fail to identify most host-dominated AGN. We observe that a bright (r ≲ 21 mag) AGN LS is able to retrieve candidate samples not affected by the magnitude cut, which is of great importance as faint AGN LSs for LSST-related studies will be hard to find and likely imbalanced. We estimate a sky density of 6.2 × 106 AGN for the LSST main survey down to our current magnitude limit.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3