Extended view on the dust shells around two carbon stars

Author:

Mečina M.,Aringer B.,Nowotny W.,Groenewegen M. A. T.,Kerschbaum F.,Brunner M.,Gail H.-P.

Abstract

Context. Stars on the asymptotic giant branch lose considerable amounts of matter through their dust-driven stellar winds. A number of such sources have been imaged by Herschel/PACS, revealing a diverse sample of different morphological types. Among them are a few examples which show geometrically thin, spherically symmetric shells which can be used to probe the mass loss history of their host stars. Aims. We aim to determine the physical properties of the dust envelope around the two carbon stars U Hya and W Ori. With the much-improved spatial constraints from the new far-infrared maps, our primary goal is to measure the dust masses contained in the shells and see how they fit the proposed scenarios of shell formation. Methods. We calculated the radiative transfer of the circumstellar dust envelope using the 1D code More of DUSTY (MoD). Adopting a parametrised density profile, we obtained a best-fit model in terms of the photometric and spectroscopic data, as well as a radial intensity profile based on Herschel/PACS data. For the case of U Hya, we also computed a grid of circumstellar envelopes by means of a stationary wind code and compare the results of the two modelling approaches. Results. The Herschel/PACS maps show U Hya surrounded by a detached shell of 114′′ (0.12 pc) in radius, confirming the observations from previous space missions. The dust masses calculated for the shell by the two approaches are consistent with respect to the adopted dust grain properties. In addition, around W Ori, we detect for the first time a weak spherically symmetric structure with a radius of 92′′ (0.17 pc) and a dust mass of (3.5 ± 0.3) × 10−6 M.

Funder

FWF

FFG

ERC

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A large bubble around the AGB star R Dor detected in the UV;Monthly Notices of the Royal Astronomical Society;2023-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3