Abstract
Using the Yebes 40m and IRAM 30m radio telescopes, we detected a series of harmonically related lines with a rotational constant B0 = 4460.590 ± 0.001 MHz and a distortion constant D0 = 0.511 ± 0.005 kHz towards the cold dense core TMC-1. High-level-of-theory ab initio calculations indicate that the best possible candidate is protonated tricarbon monoxide, HC3O+. We have succeeded in producing this species in the laboratory and observed its Ju − Jl = 2–1 and 3–2 rotational transitions. Hence, we report the discovery of HC3O+ in space based on our observations, theoretical calculations, and laboratory experiments. We derive an abundance ratio N(C3O)/N(HC3O+) ∼ 7. The high abundance of the protonated form of C3O is due to the high proton affinity of the neutral species. The chemistry of O-bearing species is modelled, and predictions are compared to the derived abundances from our data for the most prominent O-bearing species in TMC-1.
Funder
European Research Council
Ministerio de Ciencia e Innovación
Ministry of Science and Technology of Taiwan
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献