Local dew-point temperature, water vapor pressure, and millimeter-wavelength opacity at the Sierra Negra volcano

Author:

Mendoza-Torres J. E.,Colín-Beltrán E.,Ferrusca D.,Contreras R. J.

Abstract

Aims. Some astronomical facilities are in operation at the Sierra Negra volcano (SNV), at ∼4.5 km over the sea level (o.s.l.) in Mexico. We asses whether it is possible to estimate the opacity for millimeter-wavelength observations based on the meteorological parameters at the site. A criterion for allowing astronomical observations at SNV depends on the atmospheric opacity at 225 GHz, which has to be τ225 ≤ 0.30 Nepers. The correlation of the opacity at SNV, measured with a radiometer at 225 GHz, τ225, with the local dew point temperature, TDP, the water vapor pressure, PH2O and the water vapor content (WVC) at SNV is studied with the aim to determine whether these parameters can be used to estimate the opacity at similar high-altitude locations for astronomical observations at millimeter wavelengths. Methods. We used radiosonde data taken in various decades in Mexico City (MX) and Veracruz City (VR) to compute the WVC in 0.5 km altitude (h) intervals from 0 km for VR and from 2.0 km for MX to 9.5 km o.s.l. to study the altitude profile WVC(h) at SNV by interpolating data of MX and VR. We also fit exponential functions to observed WVC (WVCobs(h)), obtaining a fit WVC (WVCftd(h)). The WVCobs(h) and WVCftd(h) were integrated, from lower limits of hlow = 2.5–5.5 km to the upper limit of 9.5 km as a measure of the input of WVCobs(h ≥ hlow) to the precipitable water vapor. Results. The largest differences between WVCobs and WVCftd values occur at low altitudes. The input of WVCobs(h) to the precitpitable water vapor for h ≥ 4.5 km ranges from 15% to 29%. At 4.5–5.0 km, the input is between 4% and 8%. This means that it is about a third of the WVC (h ≥ 4.5 km). The input above our limit (from 9.5–30.0 km) is estimated with WVCftd(h) and is found to be lower than 1%. The correlation of τ225 with TDP, PH2O, and WVCSNV takes values between 0.6 and 0.8. A functional relation is proposed based on simultaneous data taken in 2013–2015, according to which it is possible to estimate the opacity with the TDP, PH2O, or WVCSNV at the site. Conclusions. With local meteorological parameters, it is possible to know whether the opacity meets the condition τ225 ≤ 0.30 Nepers, with an uncertainty of ±0.16 Nepers. The uncertainty is low for low opacities and increases with increasing opacity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3