The need for new techniques to identify the high-frequency MHD waves of an oscillating coronal loop

Author:

Allian FarhadORCID,Jain RekhaORCID

Abstract

Context. Magnetic arcades in the solar atmosphere, or coronal loops, are common structures known to host magnetohydrodynamic (MHD) waves and oscillations. Of particular interest are the observed properties of transverse loop oscillations, such as their frequency and mode of oscillation, which have received significant attention in recent years because of their seismological capability. Previous studies have relied on standard data analysis techniques, such as a fast Fourier transform (FFT) and wavelet transform (WT), to correctly extract periodicities and identify the MHD modes. However, the ways in which these methods can lead to artefacts requires careful investigation. Aims. We aim to assess whether these two common spectral analysis techniques in coronal seismology can successfully identify high-frequency waves from an oscillating coronal loop. Methods. We examine extreme ultraviolet images of a coronal loop observed by the Atmospheric Imaging Assembly in the 171 Å waveband on board the Solar Dynamics Observatory. We perform a spectral analysis of the loop waveform and compare our observation with a basic simulation. Results. The spectral FFT and WT power of the observed loop waveform is found to reveal a significant signal with frequency ∼2.67 mHz superposed onto the dominant mode of oscillation of the loop (∼1.33 mHz), that is, the second harmonic of the loop. The simulated data show that the second harmonic is completely artificial even though both of these methods identify this mode as a real signal. This artificial harmonic, and several higher modes, are shown to arise owing to the periodic but non-uniform brightness of the loop. We further illustrate that the reconstruction of the ∼2.67 mHz component, particularly in the presence of noise, yields a false perception of oscillatory behaviour that does not otherwise exist. We suggest that additional techniques, such as a forward model of a 3D coronal arcade, are necessary to verify such high-frequency waves. Conclusions. Our findings have significant implications for coronal seismology, as we highlight the dangers of attempting to identify high-frequency MHD wave modes using these standard data analysis techniques.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3