Cosmic ray sputtering yield of interstellar ice mantles

Author:

Dartois E.ORCID,Chabot M.,Id Barkach T.,Rothard H.,Boduch P.,Augé B.,Agnihotri A. N.

Abstract

Aims. Cosmic-ray-induced sputtering is one of the important desorption mechanisms at work in astrophysical environments. The chemical evolution observed in high-density regions, from dense clouds to protoplanetary disks, and the release of species condensed on dust grains, is one key parameter to be taken into account in interpretations of both observations and models. Methods. This study is part of an ongoing systematic experimental determination of the parameters to consider in astrophysical cosmic ray sputtering. As was already done for water ice, we investigated the sputtering yield as a function of ice mantle thickness for the two next most abundant species of ice mantles, carbon monoxide and carbon dioxide, which were exposed to several ion beams to explore the dependence with deposited energy. Results. These ice sputtering yields are constant for thick films. It decreases rapidly for thin ice films when reaching the impinging ion sputtering desorption depth. An ice mantle thickness dependence constraint can be implemented in the astrophysical modelling of the sputtering process, in particular close to the onset of ice mantle formation at low visual extinctions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3