Spectroscopic classification of a complete sample of astrometrically-selected quasar candidates using Gaia DR2

Author:

Heintz K. E.ORCID,Fynbo J. P. U.,Geier S. J.,Møller P.,Krogager J.-K.,Konstantopoulou C.,de Burgos A.,Christensen L.,Steinhardt C. L.,Milvang-Jensen B.,Jakobsson P.,Høg E.,Arvedlund B. E. H. K.,Christiansen C. R.,Hansen T. B.,Henriksen P. D.,Kuszon K. B.,McKenzie I. B.,Mosekjær K. A.,Paulsen M. F. K.,Sukstorf M. N.,Wilson S. N.,Ørgaard S. K. K.

Abstract

Here we explore the efficiency and fidelity of a purely astrometric selection of quasars as point sources with zero proper motions in the Gaia data release 2 (DR2). We have built a complete candidate sample including 104 Gaia-DR2 point sources, which are brighter than 20th magnitude in the Gaia G-band within one degree of the north Galactic pole (NGP); all of them have proper motions that are consistent with zero within 2σ uncertainty. In addition to pre-existing spectra, we have secured long-slit spectroscopy of all the remaining candidates and find that all 104 stationary point sources in the field can be classified as either quasars (63) or stars (41). One of the new quasars that we discover is particularly interesting as the line-of-sight to it passes through the disc of a foreground (z = 0.022) galaxy, which imprints both NaD absorption and dust extinction on the quasar spectrum. The selection efficiency of the zero-proper-motion criterion at high Galactic latitudes is thus ≈60%. Based on this complete quasar sample, we examine the basic properties of the underlying quasar population within the imposed limiting magnitude. We find that the surface density of quasars is 20 deg−2 (at G <  20 mag), the redshift distribution peaks at z ∼ 1.5, and only eight systems (13-3+5%) show significant dust reddening. We then explore the selection efficiency of commonly used optical, near-, and mid-infrared quasar identification techniques and find that they are all complete at the 85−90% level compared to the astrometric selection. Finally, we discuss how the astrometric selection can be improved to an efficiency of ≈70% by including an additional cut requiring parallaxes of the candidates to be consistent with zero within 2σ. The selection efficiency will further increase with the release of future, more sensitive astrometric measurements from the Gaia mission. This type of selection, which is purely based on the astrometry of the quasar candidates, is unbiased in terms of colours and intrinsic emission mechanisms of the quasars and thus provides the most complete census of the quasar population within the limiting magnitude of Gaia.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3