The LOFAR Two-metre Sky Survey Deep Fields

Author:

Smith D. J. B.ORCID,Haskell P.,Gürkan G.ORCID,Best P. N.,Hardcastle M. J.ORCID,Kondapally R.ORCID,Williams W.ORCID,Duncan K. J.,Cochrane R. K.ORCID,McCheyne I.,Röttgering H. J. A.,Sabater J.ORCID,Shimwell T. W.,Tasse C.,Bonato M.ORCID,Bondi M.ORCID,Jarvis M. J.ORCID,Leslie S. K.,Prandoni I.ORCID,Wang L.

Abstract

In this paper, we investigate the relationship between 150 MHz luminosity and the star-formation rate – the SFR-L150 MHz relation – using 150 MHz measurements for a near-infrared selected sample of 118 517 z < 1 galaxies. New radio survey data offer compelling advantages over previous generation surveys for studying star formation in galaxies, including huge increases in sensitivity, survey speed, and resolution, while remaining impervious to extinction. The LOFAR Surveys Key Science Project is transforming our understanding of the low-frequency radio sky, with the 150 MHz data over the European Large Area Infrared Space Observatory Survey-North 1 field reaching an rms sensitivity of 20 μJy beam−1 over 10 deg2 at 6 arcsec resolution. All of the galaxies studied have SFR and stellar mass estimates that were derived from energy balance spectral energy distribution fitting using redshifts and aperture-matched forced photometry from the LOFAR Two-metre Sky Survey (LoTSS) Deep Fields data release. The impact of active galactic nuclei (AGN) is minimised by leveraging the deep ancillary data in the LoTSS data release, alongside median-likelihood methods that we demonstrate are resistant to AGN contamination. We find a linear and non-evolving SFR-L150 MHz relation, apparently consistent with expectations based on calorimetric arguments, down to the lowest SFRs < 0.01M yr−1. However, we also recover compelling evidence for stellar mass dependence in line with previous work on this topic, in the sense that higher mass galaxies have a larger 150 MHz luminosity at a given SFR, suggesting that the overall agreement with calorimetric arguments may be a coincidence. We conclude that, in the absence of AGN, 150 MHz observations can be used to measure accurate galaxy SFRs out to z = 1 at least, but it is necessary to account for stellar mass in the estimation in order to obtain 150 MHz-derived SFRs accurate to better than 0.5 dex. Our best-fit relation is log10(L150 MHz ∕W Hz−1) = (0.90 ± 0.01)log10(ψM yr−1) + (0.33 ± 0.04)log10(M∕1010M) + 22.22 ± 0.02.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3