Dust observations from Parker Solar Probe: dust ejection from the inner Solar System

Author:

Mann I.ORCID,Czechowski A.

Abstract

Context. The FIELDS instrument onboard Parker Solar Probe (PSP) observes dust impacts on the spacecraft. The derived dust flux rates suggest that the particles originate from the vicinities of the Sun and are ejected by radiation pressure. Radiation pressure typically ejects particles of several 100 nm and smaller, which are also affected by the electromagnetic force. Aims. We aim to understand the influence of the electromagnetic force on the dust trajectories and to predict the dust fluxes along the orbit of PSP, within 1 AU and near Earth. Methods. We study the trajectories of dust particles influenced by gravity, radiation pressure, and the electromagnetic force assuming that pitch-angle scattering can be neglected (scatter-free approximation). We estimate the dust fluxes along the second orbit of PSP and in the vicinity of the Earth based on average dust velocities derived from the trajectory calculations and dust production rates derived from a fragmentation model. Results. The calculated cumulative flux of dust particles larger than 100 nm is of the same order (within a factor of ~2) as implied by PSP observations. In this size interval, the dynamics of most particles is dominated by the radiation pressure force. The Lorentz force becomes more important for smaller particles and fluxes can vary with magnetic field conditions. The calculated flux of the 30 to 75 nm particles at the PSP is negligible for most of the second orbit, except for an isolated peak at the perihelion. The 30–75 nm particles that were created inwards from 0.16 AU from the Sun are in trapped orbits if the radiation pressure force is weaker than gravity, which is the case for dust from asteroids and for cometary dust that was altered in space. Conclusions. The inner Solar System is the most likely source of dust smaller than 100 nm that enters Earth’s atmosphere and our results suggest the flux is time-variable.

Funder

Research Council of Norway

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference33 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3