An EAGLE view of the missing baryons

Author:

Tuominen T.,Nevalainen J.,Tempel E.,Kuutma T.,Wijers N.,Schaye J.,Heinämäki P.,Bonamente M.,Ganeshaiah Veena P.

Abstract

Context. A significant fraction of the predicted baryons remain undetected in the local Universe. We adopted the common assumption that a large fraction of the missing baryons correspond to the hot (log T(K) = 5.5–7) phase of the warm-hot intergalactic medium (WHIM). We base our missing baryons search on the scenario whereby the WHIM has been heated up via accretion shocks and galactic outflows, and it is concentrated towards the filaments of the cosmic web. Aims. Our aim is to improve the observational search for the poorly detected hot WHIM. Methods. We detected the filamentary structure within the EAGLE hydrodynamical simulation by applying the Bisous formalism to the galaxy distribution. To test the reliability of our results, we used the MMF/NEXUS+ classification of the large-scale environment of the dark matter component in EAGLE. We then studied the spatio-thermal distribution of the hot baryons within the extracted filaments. Results. While the filaments occupy only ≈5% of the full simulation volume, the diffuse hot intergalactic medium in filaments amounts to ≈23%−25% of the total baryon budget, or ≈79%−87% of all the hot WHIM. The optimal filament sample, with a missing baryon mass fraction of ≈82%, is obtained by selecting Bisous filaments with a high galaxy luminosity density. For these filaments, we derived analytic formulae for the radial gas density and temperature profiles, consistent with recent Planck Sunyaev-Zeldovich and cosmic microwave background lensing observations within the central r ≈ 1 Mpc. Conclusions. Results from the EAGLE simulation suggest that the missing baryons are strongly concentrated towards the filament axes. Since the filament finding methods used here are applicable to galaxy surveys, a large fraction of the missing baryons can be localised by focusing the observational efforts on the central ∼1 Mpc regions of the filaments. To optimise the observational signal, it is beneficial to focus on the filaments with the highest galaxy luminosity densities detected in the optical data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3