Milky Way spiral arms from open clusters in Gaia EDR3

Author:

Castro-Ginard A.ORCID,McMillan P. J.ORCID,Luri X.ORCID,Jordi C.ORCID,Romero-Gómez M.,Cantat-Gaudin T.ORCID,Casamiquela L.ORCID,Tarricq Y.ORCID,Soubiran C.ORCID,Anders F.ORCID

Abstract

Context. The physical processes driving the formation of Galactic spiral arms are still under debate. Studies using open clusters favour the description of the Milky Way spiral arms as long-lived structures following the classical density wave theory. Current studies comparing the Gaia DR2 field stars kinematic information of the solar neighbourhood to simulations, find a better agreement with short-lived arms with a transient behaviour. Aims. Our aim is to provide an observational, data-driven view of the Milky Way spiral structure and its dynamics using open clusters as the main tracers, and to contrast it with simulation-based approaches. We used the most complete catalogue of Milky Way open clusters, with astrometric Gaia EDR3 updated parameters, estimated astrophysical information, and radial velocities, to revisit the nature of the spiral pattern of the Galaxy. Methods. We used a Gaussian mixture model to detect overdensities of open clusters younger than 30 Myr that correspond to the Perseus, Local, Sagittarius, and Scutum spiral Arms, respectively. We used the birthplaces of the open cluster population younger than 80 Myr to trace the evolution of the different spiral arms and compute their pattern speed. We analysed the age-distribution of the open clusters across the spiral arms to explore the differences in the rotational velocity of stars and spiral arms. Results. We are able to increase the range in Galactic azimuth where present-day spiral arms are described, better estimating its parameters by adding 264 young open clusters to the 84 high-mass star-forming regions used so far, thus increasing the number of tracers by 314%. We used the evolution of the open clusters from their birth positions to find that spiral arms nearly co-rotate with field stars at any given radius, discarding a common spiral pattern speed for the spiral arms explored. Conclusions. The derivation of different spiral pattern speeds for the different spiral arms disfavours classical density waves as the main drivers for the formation of the Milky Way spiral structure, and it is in better agreement with simulation-based approaches that tend to favour transient spirals. The increase in the number of known open clusters, as well as in their derived properties, allows us to use them as effective spiral structure tracers and homogenise the view from open clusters and field stars on the nature of the Galactic spiral arms.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3