Stellar kinematics in the nuclear regions of nearby LIRGs with VLT-SINFONI

Author:

Crespo Gómez A.ORCID,Piqueras López J.ORCID,Arribas S.ORCID,Pereira-Santaella M.,Colina L.ORCID,Rodríguez del Pino B.ORCID

Abstract

Context. Nearby luminous infrared galaxies (LIRGs) are often considered to be the local counterpart of the star forming galaxy (SFG) population at z > 1. Therefore, local LIRGs are ideal systems with which to perform spatially resolved studies on the physical processes that govern these objects and to validate assumptions made in high-z studies because of a lack of sensitivity and/or spatial resolution. Aims. In this work we analyse the spatially resolved kinematics of the stellar component in the inner r < 1–2 kpc of ten nearby (mean z = 0.014) LIRGs, establishing the dynamical state of the stars and estimating their dynamical masses (Mdyn). We compare the stellar kinematics with those for different gas phases, and analyse the relative effects of using different tracers when estimating dynamical masses. Methods. We use seeing-limited SINFONI H- and K-band spectroscopy in combination with ancillary infrared (IR) imaging from various instruments (NICMOS/F160W, NACO/Ks and IRAC/3.6 μm). The stellar kinematics are extracted in both near-IR bands by fitting the continuum emission using pPXF. The velocity maps are then modelled as rotating discs and used to extract the geometrical parameters (i.e. centre, PA, and inclination), which are compared with their photometric counterparts extracted from the near-IR images. We use the stellar and the previously extracted gas velocity and velocity dispersion maps to estimate the dynamical mass using the different tracers. Results. We find that the different gas phases have similar kinematics, whereas the stellar component is rotating with slightly lower velocities (i.e. V* ∼ 0.8Vg) but in significantly warmer orbits (i.e. σ* ∼ 2σg) than the gas phases, resulting in significantly lower V/σ for the stars (i.e. ∼1.5–2) than for the gas (i.e. ∼4–6). These ratios can be understood if the stars are rotating in thick discs while the gas phases are confined in dynamically cooler (i.e. thinner) rotating discs. However, these differences do not lead to significant discrepancies between the dynamical mass estimations based on the stellar and gas kinematics. This result suggests that the gas kinematics can be used to estimate Mdyn also in z ∼ 2 SFGs, a galaxy population that shares many structural and kinematic properties with local LIRGs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3