The spin-orbit alignment of visual binaries

Author:

Justesen A. B.ORCID,Albrecht S.ORCID

Abstract

Context. The angle between the stellar spin-axis and the orbital plane of a stellar or planetary companion has important implications for the formation and evolution of such systems. A study by Hale (1994, AJ, 107, 306) found that binaries with separations a ≲ 30 au are preferentially aligned while binaries on wider orbits are frequently misaligned. Aims. We aim to test the robustness of the Hale study results by reanalysing the sample of visual binaries with measured rotation periods using independently derived stellar parameters and a Bayesian formalism. Methods. Our analysis is based on a combination of data from the Hale study and newly obtained spectroscopic data from the Hertzsprung SONG telescope, combined with astrometric data from Gaia DR2 and the Washington Double Star Catalog. We combine measurements of stellar radii and rotation periods to obtain stellar rotational velocities v. Rotational velocities v are combined with measurements of projected rotational velocities v sin i to derive posterior probability distributions of stellar inclination angles i. We determine line-of-sight projected spin-orbit angles by comparing stellar inclination angles with astrometric orbital inclination angles. Results. We find that the precision of the available data is insufficient to make inferences about the spin-orbit alignment of visual binaries. The data are equally compatible with alignment and misalignment at all orbital separations. Conclusions. We conclude that the previously reported trend that binaries with separations a ≲ 30 au are preferentially aligned is spurious. The spin-orbit alignment distribution of visual binaries is unconstrained. Based on simulated observations, we predict that it will be difficult to reach the sufficient precision in v sin i, rotation periods, and orbital inclination required to make robust statistical inferences about the spin-orbit alignment of visual binaries.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3