The host galaxy of the short GRB 050709

Author:

Nicuesa Guelbenzu A. M.,Klose S.ORCID,Schady P.ORCID,Greiner J.ORCID,Hartmann D. H.ORCID,Hunt L. K.ORCID,Magnelli B.,Masetti N.ORCID,Michałowski M. J.ORCID,Palazzi E.ORCID,Rossi A.ORCID,Wieringa M.,Stecklum B.ORCID

Abstract

The host of the short gamma-ray burst (GRB) 050709 is a morphologically disturbed low-luminous galaxy. At a redshift of z = 0.16, it belongs to one of the cosmologically nearest short-GRB hosts identified to date. Consequently, it represents a promising target for sensitive, spatially resolved observational studies. We have used the Multi Unit Spectroscopic Explorer (MUSE) mounted at the Very Large Telescope to characterize the GRB host galaxy. In addition, we performed deep radio-continuum observations of the host with the Australia Telescope Compact Array (ATCA) and with ALMA at 1.3 mm. Moreover, we made use of archival Spitzer Space Telescope 24 μm and Hubble Space Telescope/F814W imaging data of this galaxy. The spatially resolved MUSE data reveal that the entire host is a source of strong line emission, in particular from Hα and [O III] λ 5007, superimposed on a rather weak stellar continuum. Using the Balmer decrement, we map the internal host-galaxy reddening and derive an extinction-corrected star formation rate based on the flux in the Hα line of 0.15 ± 0.02 M yr−1. The galaxy is detected neither by ALMA nor by Spitzer, excluding a substantial amount of optically obscured star formation activity. Using the O3N2 metallicity indicator, we measure an average 12 + log (O/H) = 8.40 ± 0.05 (corresponding to ∼0.5 solar). Diagnostic emission line diagrams show that a substantial fraction of all MUSE spaxels that cover the GRB 050709 host galaxy lie close to the star-formation demarcation line. Some spaxels even suggest line emission by shocked gas. The ATCA observations reveal faint diffuse radio emission at the eastern part of the host in excess to that expected from pure star formation, possibly further evidence for nonthermal processes. The kinematics of the Hα-emitting gas suggests a rotationally supported host-galaxy system, apparently in contrast to its irregular photometric morphology. A comparison with the field-galaxy population reveals, however, that the kinematics of the gas in the 050709 host fits into the ensemble of merging galaxies well. Finally, we use the ATCA radio data to set deep constraints on any late-time flux from the GRB afterglow or a potentially associated kilonova radio flare ∼10 years after the burst.

Funder

Deutsche Forschungsgemeinschaft

National Science Centre, Poland

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference143 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3