Slow magneto-acoustic waves in simulations of a solar plage region carry enough energy to heat the chromosphere

Author:

Yadav N.ORCID,Cameron R. H.,Solanki S. K.

Abstract

Aims. We study the properties of slow magneto-acoustic waves that are naturally excited as a result of turbulent convection and we investigate their role in the energy balance of a plage region using three dimensional radiation magnetohydrodynamic simulations. Methods. To follow slow magneto-acoustic waves traveling along the magnetic field lines, we selected 25 seed locations inside a strong magnetic element and tracked the associated magnetic field lines both in space and time. We calculate the longitudinal component (i.e., parallel to the field) of velocity at each grid point along the field line and compute the temporal power spectra at various heights above the mean solar surface. Additionally, the horizontally-averaged (over the whole domain) frequency power spectra for both longitudinal and vertical (i.e., the component perpendicular to the surface) components of velocity are calculated using time series at fixed locations. To compare our results with the observations, we degrade the simulation data with Gaussian kernels having a full width at half maxium of 100 km and 200 km and calculate the horizontally-averaged power spectra for the vertical component of velocity using time series at fixed locations. Results. The power spectra of the longitudinal component of velocity, averaged over 25 field lines in the core of a kG magnetic flux concentration reveal that the dominant period of oscillations shifts from ∼6.5 min in the photosphere to ∼4 min in the chromosphere. This behavior is consistent with earlier studies that were restricted to vertically propagating waves. At the same time, the velocity power spectra, averaged horizontally over the whole domain, show that low frequency waves (∼6.5 min period) may reach well into the chromosphere. In addition, the power spectra at high frequencies follow a power law with an exponent close to −5/3, suggestive of turbulent excitation. Moreover, waves with frequencies above 5 mHz propagating along different field lines are found to be out of phase with each other, even within a single magnetic concentration. The horizontally-averaged power spectra of the vertical component of velocity at various effective resolutions show that the observed acoustic wave energy fluxes are underestimated by a factor of three, even if determined from observations carried out at a high spatial resolution of 200 km. Since the waves propagate along the non-vertical field lines, measuring the velocity component along the line-of-sight, rather than along the field, contributes significantly to this underestimation. Moreover, this underestimation of the energy flux indirectly indicates the importance of high-frequency waves that are shown to have a smaller spatial coherence and are thus more strongly influenced by the spatial averaging effect compared to low-frequency waves. Conclusions. Inside a plage region, there is on average a significant fraction of low frequency waves leaking into the chromosphere due to inclined magnetic field lines. Our results show that longitudinal waves carry (just) enough energy to heat the chromosphere in the solar plage. However, phase differences between waves traveling along different field lines within a single magnetic concentration can lead to underestimations of the wave energy flux due to averaging effects in degraded simulation data and, similarly, in observations with lower spatial resolution. We find that current observations (with spatial resolution around 200 km) underestimate the energy flux by roughly a factor of three – or more if the observations are carried out at a lower spatial resolution. We expect that even at a very high resolution, which is expected with the next generation of telescopes such as DKIST and the EST, less than half, on average, of the energy flux carried by such waves will be detected if only the line-of-sight component of the velocity is measured.

Funder

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3