General-relativistic instability in hylotropic supermassive stars

Author:

Haemmerlé L.

Abstract

Context. The formation of supermassive black holes by direct collapse would imply the existence of supermassive stars (SMSs) and their collapse through the general-relativistic (GR) instability into massive black hole seeds. However, the final mass of SMSs is weakly constrained by existing models, in spite of the importance of this value for the consistency of the direct collapse scenario. Aims. We estimate the final masses of spherical SMSs within the whole parameter space that is relevant to these objects. Methods. We built analytical stellar structures (hylotropes) that mimic existing numerical SMS models, accounting for full stellar evolution with rapid accretion. From these hydrostatic structures, we determine ab initio the conditions for GR instability and compare the results with the predictions for full stellar evolution. Results. We show that hylotropic models predict the onset of GR instability with a high level of precision. The mass of the convective core appears as a decisive quantity. The lower it is, the larger the total mass required for GR instability. The typical conditions for GR instability feature a total mass of ≳105 M with a core mass of ≳104 M. If the core mass remains below 104 M, total masses in excess of 106 − 107 M can be reached. Conclusions. Our results confirm that spherical SMSs forming in primordial, atomically cooled haloes collapse at masses below 500 000 M. On the other hand, accretion rates in excess of 1000 M yr−1, leading to final stellar masses of ≳106 M, are required for massive black hole formation in metal-rich gas. Thus, the different channels of direct collapse imply distinct final masses for the progenitor of the black hole seed.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3