Kink instability of triangular jets in the solar atmosphere

Author:

Zaqarashvili T. V.ORCID,Lomineishvili S.ORCID,Leitner P.,Hanslmeier A.,Gömöry P.ORCID,Roth M.

Abstract

Context. It is known that hydrodynamic triangular jets (i.e. the jet with maximal velocity at its axis, which linearly decreases at both sides) are unstable to anti-symmetric kink perturbations. The inclusion of the magnetic field may lead to the stabilisation of the jets. Jets and complex magnetic fields are ubiquitous in the solar atmosphere, which suggests the possibility of the kink instability in certain cases. Aims. The aim of the paper is to study the kink instability of triangular jets sandwiched between magnetic tubes (or slabs) and its possible connection to observed properties of the jets in the solar atmosphere. Methods. A dispersion equation governing the kink perturbations is obtained through matching of analytical solutions at the jet boundaries. The equation is solved analytically and numerically for different parameters of jets and surrounding plasma. The analytical solution is accompanied by a numerical simulation of fully non-linear magnetohydrodynamic (MHD) equations for a particular situation of solar type II spicules. Results. Magnetohydrodynamic triangular jets are unstable to the dynamic kink instability depending on the Alfvén Mach number (the ratio of flow to Alfvén speeds) and the ratio of internal and external densities. When the jet has the same density as the surrounding plasma, only super-Alfvénic flows are unstable. However, denser jets are also unstable in a sub-Alfvénic regime. Jets with an angle to the ambient magnetic field have much lower thresholds of instability than field-aligned flows. Growth times of the kink instability are estimated to be 6−15 min for type I spicules and 5−60 s for type II spicules matching with their observed lifetimes. The numerical simulation of full non-linear equations shows that the transverse kink pulse locally destroys the jet in less than a minute in type II spicule conditions. Conclusions. Dynamic kink instability may lead to the full breakdown of MHD flows and consequently to an observed disappearance of spicules.

Funder

Austrian Science Fund

Georgian Shota Rustaveli National Scirnce Foundation

German Research Foundation

VEGA

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3