Crust structure and thermal evolution of neutron stars in soft X-ray transients

Author:

Potekhin A. Y.ORCID,Chabrier G.ORCID

Abstract

Context. The thermal evolution of neutron stars in soft X-ray transients (SXTs) is sensitive to the equation of state, nucleon superfluidity, and the composition and structure of the crust. Carrying out comparisons of the observations of their crust cooling with simulations offers a powerful tool for verifying theoretical models of dense matter. Aims. We study the effect of physics input on the thermal evolution of neutron stars in SXTs. In particular, we consider different modern models of the sources of deep crustal heating during accretion episodes and the effects brought on by impurities embedded in the crust during its formation. Methods. We simulated the thermal structure and evolution of episodically accreting neutron stars under different assumptions regarding the crust composition and on the distribution of heat sources and impurities. For the non-accreted crust, we considered the nuclear charge fluctuations that arise at crust formation. For the accreted crust, we compared different theoretical models of composition and internal heating. We also compared the results of numerical simulations to observations of the crust cooling in SXT MXB 1659−29. Results. The non-accreted part of the inner crust of a neutron star can have a layered structure, with almost pure crystalline layers interchanged with layers composed of mixtures of different nuclei. The latter layers have relatively low thermal conductivities, which has an effect on the thermal evolution of the transients. The impurity distribution in the crust strongly depends on models of the dense matter and the crust formation scenario. The shallow heating that is needed to reach an agreement between the theory and the observations depends on characteristics of the crust and envelope.

Funder

Russian Science Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3