Satellite observation of the dust trail of a major bolide event over the Bering Sea on December 18, 2018

Author:

Borovička J.ORCID,Setvák M.,Roesli H.,Kerkmann J. K.

Abstract

Context.One of the most energetic bolide events in recent decades was detected by the US Government sensors (USGS) over remote areas of the Bering Sea on December 18, 2018, 23:48 UT. No ground-based optical observations exist.Aims.Using the satellite imagery of the dust trail left behind by the bolide, we tried to reconstruct the bolide trajectory. In combination with the bolide speed reported by the USGS, we computed the pre-atmospheric orbit. Observations in various spectral bands from 0.4 to 13.3μm enabled us to study the dust properties.Methods.Images of the dust trail and its shadow obtained from various angles by the Multi-angle Imaging SpectroRadiometer (MISR) on board the Terra polar satellite and geostationary satellites Himawari-8 and Geostationary Operational Environmental Satellite 17 (GOES-17) were used. The initial position and orientation of the trail was varied, and its projections into the geoid coordinate grid were computed and compared with real data. Trail motion due to atmospheric wind was taken into account. Radiances and reflectances of selected parts of the dust trail were taken from the Moderate-resolution Imaging Spectroradiometer (MODIS) on board Terra. Reflectance spectra were compared with asteroid spectra.Results.The bolide radiant was found to be 13° ± 9° from that reported by the USGS, at azimuth 130° (from south to west) and zenith distance 14°. The bolide position was confirmed, including the height of maximum dust deposition around 25 km. The incoming asteroid had to be quite strong to maintain a high speed down to this height. The speed of 32 km s−1, reported by the USGS, was found to be plausible. The orbit had a high inclination of about 50° and a perihelion distance between 0.95–1 AU. The semimajor axis could not be restricted well but was most probably between 1–3 AU. The dust reflectance was much lower in the blue than in the red, consistent with the material of A- or L-type asteroid. The absorption at 11μm confirms the presence of crystalline silicates in the dust.

Funder

Czech Science Foundation

Czech Ministry of Environment

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oort cloud perturbations as a source of hyperbolic Earth impactors;Icarus;2024-01

2. On the Proposed Interstellar Origin of the USG 20140108 Fireball;The Astrophysical Journal;2023-08-01

3. Ionospheric Effects of the Kamchatka Meteoroid: Results of GPS Observations;Kinematics and Physics of Celestial Bodies;2023-04

4. Ionospheric effects of the Kamchatka meteoroid: GPS observations;Kinematika i fizika nebesnyh tel (Online);2023-03-03

5. Resonance Electromagnetic Effect of the Kamchatka Meteoroid;Kinematics and Physics of Celestial Bodies;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3