Binary craters on Ceres and Vesta and implications for binary asteroids

Author:

Herrera C.ORCID,Carry B.ORCID,Lagain A.ORCID,Vavilov D. E.

Abstract

Context. Airless planetary objects have their surfaces covered by craters, and these can be used to study the characteristics of asteroid populations. Planetary surfaces present binary craters that are associated with the synchronous impact of binary asteroids. Aims. We identify binary craters on asteroids (1) Ceres and (4) Vesta, and aim to characterize the properties (size ratio and orbital plane) of the binary asteroids that might have formed them. Methods. We used global crater databases developed in previous studies and mosaics of images from the NASA DAWN mission high-altitude and low-altitude mapping orbits. We established selection criteria to identify craters that were most likely a product of the impact of a binary asteroid. We performed numerical simulations to predict the orientation of the binary craters assuming the population of impactors has mutual orbits coplanar with heliocentric orbits, as the current census of binary asteroids suggests. We compared our simulations with our survey of binary craters on Ceres and Vesta through a Kolmogorov-Smirnov test. Results. We find geomorphological evidence of 39 and 18 synchronous impacts on the surfaces of Ceres and Vesta, respectively. The associated binary asteroids are widely separated and similar in diameter. The distributions of the orientation of these binary craters on both bodies are statistically different from numerical impact simulations that assume binary asteroids with coplanar mutual and heliocentric orbits. Conclusions. Although the identification of binary craters on both bodies and the sample size are limited, these findings are consistent with a population of well-separated and similarly sized binary asteroids with nonzero obliquity that remains to be observed, in agreement with the population of binary craters identified on Mars.

Funder

Australian Research Council grant

Initiative d'Excellence d'Aix-Marseille Université

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3