Resistively controlled primordial magnetic turbulence decay

Author:

Brandenburg A.ORCID,Neronov A.ORCID,Vazza F.ORCID

Abstract

Context. Magnetic fields generated in the early Universe undergo turbulent decay during the radiation-dominated era. The decay is governed by a decay exponent and a decay time. It has been argued that the latter is prolonged by magnetic reconnection, which depends on the microphysical resistivity and viscosity. Turbulence, on the other hand, is not usually expected to be sensitive to microphysical dissipation, which affects only very small scales. Aims. We want to test and quantify the reconnection hypothesis in decaying hydromagnetic turbulence. Methods. We performed high-resolution numerical simulations with zero net magnetic helicity using the PENCIL CODE with up to 20483 mesh points and relate the decay time to the Alfvén time for different resistivities and viscosities. Results. The decay time is found to be longer than the Alfvén time by a factor that increases with increasing Lundquist number to the 1/4 power. The decay exponent is as expected from the conservation of the Hosking integral, but a timescale dependence on resistivity is unusual for developed turbulence and not found for hydrodynamic turbulence. In two dimensions, the Lundquist number dependence is shown to be leveling off above values of ≈25 000, independently of the value of the viscosity. Conclusions. Our numerical results suggest that resistivity effects have been overestimated in earlier work. Instead of reconnection, it may be the magnetic helicity density in smaller patches that is responsible for the resistively slow decay. The leveling off at large Lundquist number cannot currently be confirmed in three dimensions.

Funder

Vetenskapsrådet

NSF

NASA ATP

Deutsche Forschungsgemeinschaft

Cariplo

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3