Ingot-like class of wavefront sensors for laser guide stars

Author:

Ragazzoni R.ORCID,Portaluri E.ORCID,Greggio D.ORCID,Dima M.,Arcidiacono C.ORCID,Bergomi M.ORCID,Di Filippo S.ORCID,Gomes Machado T. S.ORCID,Santhakumari K. K. R.ORCID,Viotto V.ORCID,Battaini F.ORCID,Carolo E.ORCID,Chinellato S.,Farinato J.,Magrin D.ORCID,Marafatto L.,Umbriaco G.ORCID,Vassallo D.ORCID

Abstract

Context. Full sky coverage adaptive optics (AO) on extremely large telescopes requires the adoption of several laser guide stars as references. With such large apertures, the apparent elongation of the beacons is absolutely significant. With a few exceptions, wavefront sensors (WFSs) designed for natural guide stars can be adapted and used in suboptimal mode in this context. Aims. We analyse and describe the geometrical properties of a class of WFSs that are specifically designed to deal with laser guide stars propagated from a location in the immediate vicinity of the telescope aperture. Methods. We describe, in three dimensions, the loci where the light of the laser guide stars would focus in the focal volume located behind the focal plane where astronomical objects are reimaged. We also describe the properties of several types of optomechanical devices that act as perturbers for this new class of pupil plane sensors, through refraction and reflections. We refer to these as ingot WFSs. Results. We provide the recipes both for the most reasonably complex version of these WFSs, with six pupils and, for the simplest one, only three pupils. Both of them are referred to on the basis of the European Extremely Large Telescope (ELT) case. We outlined elements that are meant to give a qualitative idea of how the sensitivity of this new class of sensors compares to conventional ones. Conclusions. We present a new class of WFSs, based on an extension to the case of elongated sources at a finite distance of the pyramid WFS. We point out which advantages of the pyramid can be retained and how it may be adopted to optimize the sensing procedure.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3