Probing the physics of star formation (ProPStar)

Author:

Valdivia-Mena María TeresaORCID,Pineda Jaime E.ORCID,Caselli PaolaORCID,Segura-Cox Dominique M.ORCID,Schmiedeke AnikaORCID,Spezzano SilviaORCID,Offner StellaORCID,Ivlev Alexei V.ORCID,Kuffmeier MichaelORCID,Cunningham NicholORCID,Neri RobertoORCID,Maureira María JoséORCID

Abstract

Context. The detections of narrow channels of accretion toward protostellar disks, known as streamers, have increased in number in the last few years. However, it is unclear whether streamers are a common feature around protostars that were previously missed, or if they are a rare phenomenon. Aims. Our goals are to obtain the incidence of streamers toward a region of clustered star formation and to trace the origins of their gas to determine whether they originate within the filamentary structure of molecular clouds or from beyond. Methods. We used combined observations of the nearby NGC 1333 star-forming region, carried out with the NOEMA interferometer and the IRAM 30m single dish. Our observations cover the area between the systems IRAS 4 and SVS 13. We traced the chemically fresh gas within NGC 1333 with HC3N molecular gas emission and the structure of the fibers in this region with N2H+ emission. We fit multiple velocity components in both maps and used clustering algorithms to recover velocity-coherent structures. Results. We find streamer candidates toward 7 out of 16 young stellar objects within our field of view. This represents an incidence of approximately 40% of young stellar objects with streamer candidates in a clustered star-forming region. The incidence increases to about 60% when we only considered embedded protostars. All streamers are found in HC3N emission. Conclusions. Given the different velocities between HC3N and N2H+ emission, and because by construction, N2H+ traces the fiber structure, we suggest that the gas that forms the streamers comes from outside the fibers. This implies that streamers can connect cloud material that falls onto the filaments with protostellar disk scales.

Funder

NSF

Max-Planck-Gesellschaft

Carlsbergfondet

Horizon 2020 Framework Programme

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3