From gas to stars: MUSEings on the internal evolution of IC 1613

Author:

Taibi S.ORCID,Battaglia G.ORCID,Roth M. M.ORCID,Kamann S.ORCID,Iorio G.,Gallart C.ORCID,Leaman R.,Skillman E. D.ORCID,Kacharov N.,Beasley M. A.ORCID,Mancera Piña P. E.ORCID,van de Ven G.ORCID

Abstract

Context. The kinematics and chemical composition of stellar populations of different ages provide crucial information on the evolution of the various components of a galaxy. Aim. Our aim is to determine the kinematics of individual stars as a function of age in IC 1613, a star-forming, gas-rich, and isolated dwarf galaxy of the Local Group (LG). Methods. We present results of a new spectroscopic survey of IC 1613 conducted with MUSE, an integral field spectrograph mounted on the Very Large Telescope. We extracted ∼2000 sources, from which we separated stellar objects for their subsequent spectral analysis. The quality of the dataset allowed us to obtain accurate classifications (Teff to better than 500 K) and line-of-sight velocities (with average δv ∼ 7 km s−1) for about 800 stars. Our sample includes not only red giant branch (RGB) and main sequence (MS) stars, but also a number of probable Be and C stars. We also obtained reliable metallicities (δ[Fe/H] ∼ 0.25 dex) for about 300 RGB stars. Results. The kinematic analysis of IC 1613 revealed for the first time the presence of stellar rotation with high significance. We found general agreement with the rotation velocity of the neutral gas component. Examining the kinematics of stars as a function of broad age ranges, we find that the velocity dispersion increases as a function of age, with the behaviour being very clear in the outermost pointings, while the rotation-to-velocity dispersion support decreases. On timescales of < 1 Gyr, the stellar kinematics still follow very closely that of the neutral gas, while the two components decouple on longer timescales. The chemical analysis of the RGB stars revealed average properties comparable to other Local Group dwarf galaxies. We also provide a new estimation of the inclination angle using only independent stellar tracers. Conclusions. Our work provides the largest spectroscopic sample of an isolated LG dwarf galaxy. The results obtained seem to support the scenario in which the stars of a dwarf galaxy are born from a less turbulent gas over time.

Funder

Agencia Estatal de Investigación

Leibniz-Institut für Astrophysik Potsdam

UK Research and Innovation

European Research Council

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3