Formation of long-period post-common envelope binaries

Author:

Belloni DiogoORCID,Zorotovic MonicaORCID,Schreiber Matthias R.ORCID,Parsons Steven G.ORCID,Moe Maxwell,Garbutt James A.ORCID

Abstract

Context. It has been claimed for more than a decade that energies other than orbital and thermodynamic internal are required to explain post-common envelope (CE) binaries with sufficiently long orbital periods (≳1 d) hosting AFGK-type main-sequence stars (∼0.5 − 2.0 M) paired with oxygen-neon white dwarfs (≳1.1 M). This would imply a completely different energy budget during CE evolution for these post-CE binaries in comparison to the remaining systems hosting M dwarfs and/or less massive white dwarfs. Aims. In this first in a series of papers related to long-period post-CE binaries, we investigated whether extra energy is required to explain the currently known post-CE binaries with sufficiently long orbital periods consisting of oxygen-neon white dwarfs with AFGK-type main-sequence star companions. Methods. We carried out binary population simulations with the BSE code adopting empirically derived inter-correlated main-sequence binary distributions for the initial binary population and assuming that the only energy, in addition to orbital, that help to unbind the CE is thermal energy. We also searched for the formation pathways of the currently known systems from the zero-age main-sequence binary to their present-day observed properties. Results. Unlike what has been claimed for a long time, we show that all such post-CE binaries can be explained by assuming inefficient CE evolution, which is consistent with results achieved for the remaining post-CE binaries. There is therefore no need for an extra energy source. We also found that for CE efficiency close to 100%, post-CE binaries hosting oxygen-neon white dwarfs with orbital periods as long as one thousand days can be explained. For all known systems we found formation pathways consisting of CE evolution triggered when a highly evolved (i.e. when the envelope mass is comparable to the core mass), thermally pulsing, asymptotic giant branch star fills its Roche lobe at an orbital period of several thousand days. Due to the sufficiently low envelope mass and sufficiently long orbital period, the resulting post-CE orbital period can easily be several tens of days. Conclusions. We conclude that the known post-CE binaries with oxygen-neon white dwarfs and AFGK-type main-sequence stars can be explained without invoking any energy source other than orbital and thermal energy. Our results strengthen the idea that the most common formation pathway of the overall population of post-CE binaries hosting white dwarfs is through inefficient CE evolution.

Funder

National Science Foundation

German Research Foundation

Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica

Agencia Nacional de Investigación y Desarrollo

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wide Post-common Envelope Binaries from Gaia: Orbit Validation and Formation Models;Publications of the Astronomical Society of the Pacific;2024-08-01

2. Formation of long-period post-common-envelope binaries;Astronomy & Astrophysics;2024-06-26

3. The formation of the magnetic symbiotic star FN Sgr;Astronomy & Astrophysics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3