Abstract
Context. Binary pulsars are a powerful tool for probing strong gravity that still outperform direct gravitational wave observations in a number of ways due to the remarkable accuracy of the pulsar timing. They can constrain the presence of additional charges of the orbiting neutron stars very precisely, leading to new channels of energy and angular momentum loss, such as scalar dipole radiation.
Aims. In the present paper, we explore in detail the possibility of constraining different classes of scalar-Gauss-Bonnet gravity with binary pulsars. Additionally, we updated the existing constraints related to the observed maximum mass of neutron stars.
Methods. Interestingly, depending on the equation of state, the resulting limits on the theory coupling parameters can outperform the constraints coming from binary merger observations by up to a factor of two, even for so-called Einstein-dilaton-Gauss-Bonnet gravity where neutron stars are often underestimated as relevant theory probes. As an additional merit, precise Bayesian methods are compared with approximate approaches, with the latter showing a very good performance despite their simplicity.
Funder
German Research Foundation
European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Gravity experiments with radio pulsars;Living Reviews in Relativity;2024-07-22