22Ne distillation and the cooling sequence of the old metal-rich open cluster NGC 6791

Author:

Salaris Maurizio,Blouin Simon,Cassisi SantiORCID,Bedin Luigi R.

Abstract

Recent Monte Carlo plasma simulations carried out to study the phase separation of 22Ne in crystallizing carbon-oxygen (CO) white dwarfs (WDs; the most abundant metal after carbon and oxygen) have shown that, under the right conditions, a distillation process that transports 22Ne towards the WD centre is efficient and releases a considerable amount of gravitational energy. This can lead to cooling delays of up to several Gyr. Here we present the first CO WD stellar evolution models that self-consistently include the effect of neon distillation and cover the full range of CO WD masses for a twice-solar progenitor metallicity, which is appropriate for the old open cluster NGC 6791. The old age (about 8.5 Gyr) and high metallicity of this cluster – and hence the high neon content (about 3% by mass) in the cores of its WDs – maximize the effect of neon distillation in the models. We discuss the effect of distillation on the internal chemical stratification and cooling time of the models, confirming that distillation causes cooling delays of up to several Gyr that depend in a non-monotonic way on the mass. We also show how our models produce luminosity functions (LFs) that can match the faint end of the observed WD LF in NGC 6791, for ages consistent with the range determined from a sample of cluster eclipsing binary stars and the main sequence turn-off. Without the inclusion of distillation, the theoretical WD cooling sequences reach magnitudes that are too faint compared to observations. We also propose James Webb Space Telescope observations that would independently demonstrate the efficiency of neon distillation in the interiors of NGC 6791 WDs and help resolve the current uncertainty on the treatment of the electron conduction opacities for the hydrogen-helium envelope of WD models.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3