Formation of low-mass protostars and their circumstellar disks

Author:

Ahmad A.ORCID,González M.ORCID,Hennebelle P.,Commerçon B.ORCID

Abstract

Context. Understanding circumstellar disks is of prime importance in astrophysics; however, their birth process remains poorly constrained due to observational and numerical challenges. Recent numerical works have shown that the small-scale physics, often wrapped into a sub-grid model, play a crucial role in disk formation and evolution. This calls for a combined approach in which both the protostar and circumstellar disk are studied in concert. Aims. We aim to elucidate the small-scale physics and constrain sub-grid parameters commonly chosen in the literature by resolving the star-disk interaction. Methods. We carried out a set of very high resolution 3D radiative-hydrodynamics simulations that self-consistently describe the collapse of a turbulent, dense molecular cloud core to stellar densities. We studied the birth of the protostar, the circumstellar disk, and its early evolution (< 6 yr after protostellar formation). Results. Following the second gravitational collapse, the nascent protostar quickly reaches breakup velocity and sheds its surface material, thus forming a hot (∼103 K), dense, and highly flared circumstellar disk. The protostar is embedded within the disk such that material can flow without crossing any shock fronts. The circumstellar disk mass quickly exceeds that of the protostar, and its kinematics are dominated by self-gravity. Accretion onto the disk is highly anisotropic, and accretion onto the protostar mainly occurs through material that slides on the disk surface. The polar mass flux is negligible in comparison. The radiative behavior also displays a strong anisotropy, as the polar accretion shock was shown to be supercritical, whereas its equatorial counterpart is subcritical. We also find a remarkable convergence of our results with respect to initial conditions. Conclusions. These results reveal the structure and kinematics in the smallest spatial scales relevant to protostellar and circumstellar disk evolution. They can be used to describe accretion onto regions commonly described by sub-grid models in simulations studying larger-scale physics.

Funder

European Research Council

Agence Nationale de la Recherche

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3