Thermonuclear 28P(p, γ)29S reaction rate and astrophysical implication in ONe nova explosion

Author:

Liu J. B.,José J.ORCID,Hou S. Q.ORCID,Pignatari M.ORCID,Trueman T. C. L.,Longland R.ORCID,Li J. G.ORCID,Bertulani C. A.ORCID,Xu X. X.

Abstract

Context. An accurate 28P(p, γ)29S reaction rate is crucial to defining the nucleosynthesis products of explosive hydrogen burning in ONe novae. Using the recently released nuclear mass of 29S, together with a shell model and a direct capture calculation, we reanalyzed the 28P(p, γ)29S thermonuclear reaction rate and its astrophysical implication. Aims. We focus on improving the astrophysical rate for 28P(p, γ)29S based on the newest nuclear mass data. Our goal is to explore the impact of the new rate and associated uncertainties on the nova nucleosynthesis. Methods. We evaluated this reaction rate via the sum of the isolated resonance contribution instead of the previously used Hauser-Feshbach statistical model. The corresponding rate uncertainty at different energies was derived using a Monte Carlo method. Nova nucleosynthesis is computed with the 1D hydrodynamic code SHIVA. Results. The contribution from the capture on the first excited state at 105.64 keV in 28P is taken into account for the first time. We find that the capture rate on the first excited state in28 P is up to more than 12 times larger than the ground-state capture rate in the temperature region of 2.5 × 107 K to 4 × 108 K, resulting in the total 28P(p, γ)29S reaction rate being enhanced by a factor of up to 1.4 at ~1 × 109 K. In addition, the rate uncertainty has been quantified for the first time. It is found that the new rate is smaller than the previous statistical model rates, but it still agrees with them within uncertainties for nova temperatures. The statistical model appears to be roughly valid for the rate estimation of this reaction in the nova nucleosynthesis scenario. Using the 1D hydrodynamic code SHIVA, we performed the nucleosynthesis calculations in a nova explosion to investigate the impact of the new rates of 28P(p, γ)29S. Our calculations show that the nova abundance pattern is only marginally affected if we use our new rates with respect to the same simulations but statistical model rates. Finally, the isotopes whose abundance is most influenced by the present 28P(p, γ)29S uncertainty are 28Si, 33,34S, 35,37Cl, and 36Ar, with relative abundance changes at the level of only 3% to 4%.

Funder

National Key R&D Program of China

Strategic Priority Research Program of Chinese Academy of Sciences

National Science Foundation

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3