Secular structure of 1:2 and 1:3 mean motion resonances with Neptune

Author:

Li Hailiang,Zhou Li-YongORCID

Abstract

The 1:N mean motion resonances (MMRs) with Neptune are of particular interest in astronomy research because they have two asymmetric resonance islands, where the distribution of trapped objects may bear important clues to resolving the history of the Solar System. To explore the dynamics of these resonances and to investigate whether the imprints left by the early stage evolution can be preserved in the resonances, we conducted a comprehensive analysis of the 1:2 and 1:3 resonances. By mainly adopting the frequency analysis method, we calculated the proper frequencies of the motion of objects in the resonances and determined the secular mechanisms that influence the dynamics. Using the spectral number (SN) as an indicator of orbital regularity, we constructed dynamical maps on representative planes. After comparing the structures in the maps with the locations of the secular mechanisms, we find that the von-Zeipel-Lidov-Kozai mechanism and the 𝑔 = 2s mechanism destabilize the influenced orbits and thus sculpt the overall structure of the 1:2 and 1:3 resonances. The secular resonance of 2𝑔 − s = s8 opens a channel for objects to switch between the leading and trailing resonance islands, which can alter the population ratio between these two islands. The secondary resonances associated with the quasi 2:1 resonance between Uranus and Neptune were also detected, likely introducing more chaos to the motion. The fine dynamical structures of the 1:2 and 1:3 resonances revealed in this paper, combined with knowledge of resonant capture, provide a compelling explanation for the eccentricity distribution of observed Twotinos. Furthermore, we anticipate a more complete understanding of the history of planetary migration in the Solar System can be achieved by comparing the results in this paper with the populations in the 1:N resonances, with forthcoming observations offering more objects for study in the future.

Funder

Natural Science Foundation of China

National Key Research and Development Program of China

China Manned Space Project

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3