SYREN-HALOFIT: A fast, interpretable, high-precision formula for the ΛCDM nonlinear matter power spectrum

Author:

Bartlett Deaglan J.ORCID,Wandelt Benjamin D.ORCID,Zennaro MatteoORCID,Ferreira Pedro G.ORCID,Desmond HarryORCID

Abstract

Context. Rapid and accurate evaluation of the nonlinear matter power spectrum, P(k), as a function of cosmological parameters and redshift is of fundamental importance in cosmology. Analytic approximations provide an interpretable solution, yet current approximations are neither fast nor accurate relative to numerical emulators. Aims. We aim to accelerate symbolic approximations to P(k) by removing the requirement to perform integrals, instead using short symbolic expressions to compute all variables of interest. We also wish to make such expressions more accurate by re-optimising the parameters of these models (using a larger number of cosmologies and focussing on cosmological parameters of more interest for present-day studies) and providing correction terms. Methods. We use symbolic regression to obtain simple analytic approximations to the nonlinear scale, kσ, the effective spectral index, neff, and the curvature, C, which are required for the HALOFIT model. We then re-optimise the coefficients of HALOFIT to fit a wide range of cosmologies and redshifts. We then again exploit symbolic regression to explore the space of analytic expressions to fit the residuals between P(k) and the optimised predictions of HALOFIT. Our results are designed to match the predictions of EUCLIDEMULATOR2, but we validate our methods against N-body simulations. Results. We find symbolic expressions for kσ, neff and C which have root mean squared fractional errors of 0.8%, 0.2% and 0.3%, respectively, for redshifts below 3 and a wide range of cosmologies. We provide re-optimised HALOFIT parameters, which reduce the root mean squared fractional error (compared to EUCLIDEMULATOR2) from 3% to below 2% for wavenumbers k = 9 × 10−3 − 9 h Mpc−1. We introduce SYREN-HALOFIT (symbolic-regression-enhanced HALOFIT), an extension to HALOFIT containing a short symbolic correction which improves this error to 1%. Our method is 2350 and 3170 times faster than current HALOFIT and HMCODE implementations, respectively, and 2680 and 64 times faster than EUCLIDEMULATOR2 (which requires running CLASS) and the BACCO emulator. We obtain comparable accuracy to EUCLIDEMULATOR2 and the BACCO emulator when tested on N-body simulations. Conclusions. Our work greatly increases the speed and accuracy of symbolic approximations to P(k), making them significantly faster than their numerical counterparts without loss of accuracy.

Funder

Simons Foundation

DIM-ORIGINS

STFC

Beecroft Trust

Royal Society

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian Multi-line Intensity Mapping;The Astrophysical Journal;2024-08-01

2. A precise symbolic emulator of the linear matter power spectrum;Astronomy & Astrophysics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3