NLTE spectroscopic analysis of the 3He anomaly in subluminous B-type stars

Author:

Schneider D.,Irrgang A.,Heber U.,Nieva M. F.,Przybilla N.

Abstract

Several B-type main-sequence stars show chemical peculiarities. A particularly striking class are the 3He stars, which exhibit a remarkable enrichment of 3He with respect to 4He. This isotopic anomaly has also been found in blue horizontal branch (BHB) and subdwarf B (sdB) stars, which are helium-core burning stars of the extreme horizontal branch. Recent surveys uncovered 11 3He sdBs. The 3He anomaly is not due to thermonuclear processes, but caused by atomic diffusion in the stellar atmosphere. Using a hybrid local/non-local thermodynamic equilibrium (LTE/NLTE) approach for B-type stars, we analyzed high-quality spectra of two known 3He BHBs and nine known 3He sdBs to determine their isotopic helium abundances and 4He/3He abundance ratios. We redetermined their atmospheric parameters and analyzed selected He I lines, including λ4922 Å and λ6678 Å, which are very sensitive to 4He/3He. Most of the 3He sdBs cluster in a narrow temperature strip between 26000 K and 30000 K and are helium deficient in accordance with previous LTE analyses. BD+48° 2721 is reclassified as a BHB star because of its low temperature (Teff = 20700 K). Whereas 4He is almost absent (4He/3He < 0.25) in most of the known 3He stars, other sample stars show abundance ratios up to 4He/3He ∼2.51. A search for 3He stars among 26 candidate sdBs from the ESO SPY survey led to the discovery of two new 3He sdB stars (HE 0929–0424 and HE 1047–0436). The observed helium line profiles of all BHBs and of three sdBs are not matched by chemically homogeneous atmospheres, but hint at vertical helium stratification. This phenomenon has been seen in other peculiar B-type stars, but is found for the first time for sdBs. We estimate helium to increase from the outer to the inner atmosphere by factors ranging from 1.4 (SB 290) up to 8.0 (BD+48° 2721).

Funder

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3