Accurate effective temperature from Hα profiles

Author:

Giribaldi R. E.,Ubaldo-Melo M. L.,Porto de Mello G. F.,Pasquini L.,Ludwig H.-G.,Ulmer-Moll S.,Lorenzo-Oliveira D.

Abstract

Context. The determination of stellar effective temperature (Teff) in F, G, and K stars using Hα profile fitting is a quite remarkable and powerful tool because it does not depend on reddening and is only slightly sensitive to other atmospheric parameters. Nevertheless, this technique is not frequently used because of the complex procedure needed to recover the profile of broad lines in echelle spectra. As a consequence, tests performed on different models have sometimes provided ambiguous results. Aims. The main aim of this work is to test the ability of the Hα profile fitting technique to derive Teff. We also aim to improve the applicability of this technique to echelle spectra and to test how well 1D + LTE models perform on a variety of F–K stars. We also apply the technique to HARPS spectra and test the reliability and the stability of the HARPS response over several years using the Sun. Methods. We have developed a normalization method for recovering undistorted Hα profiles and we have first applied it to spectra acquired with the single-order Coudé instrument (resolution R = 45 000) at do Pico dos Dias Observatory to avoid the problem of blaze correction. The continuum location around Hα is optimised using an iterative procedure, where the identification of minute telluric features is performed. A set of spectra was acquired with the MUSICOS echelle spectrograph (R  =  40 000) to independently validate the normalization method. The accuracy of the method and of the 1D + LTE model is determined using Coudé/HARPS/MUSICOS spectra of the Sun and Coudé-only spectra of a sample of ten Gaia Benchmark Stars with Teff determined from interferometric measurements. HARPS, Coudé, and MUSICOS spectra are used to determine Teff of 43 sample stars. Results. We find that a proper choice of spectral windows of fits plus the identification of telluric features allow for a very careful normalization of the spectra and produce reliable Hα profiles. We also find that the most used solar atlases cannot be used as templates for Hα temperature diagnostics without renormalization. The comparison with the Sun shows that Hα profiles from 1D + LTE models underestimate the solar Teff by 28 K. We find the same agreement between Hα and interferometry and between Hα and Infrared Flux Method: a shallow dependency on metallicity according to the relation Teff = TeffHα − 159[Fe/H] + 28 K within the metallicity range − 0.70 to + 0.40 dex. The comparison with the Infrared Flux Method shows a scatter of 59 K dominated by photometric errors (52 K). In order to investigate the origin of this dependency, we analyzed spectra from 3D models and found that they produce hotter temperatures, and that their use largely improves the agreement with the interferometric and Infrared Flux Method measurements. Finally, we find HARPS spectra to be fully suitable for Hα profile temperature diagnostics; they are perfectly compatible with the Coudé spectra, and lead to the same Teff for the Sun as that found when analysing HARPS spectra over a timespan of more than 7 yr.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3