The possible common origin of M 16 and M 17

Author:

Comerón F.,Torra J.

Abstract

Context. It has been suggested that the well-studied giant HII regions M 16 and M 17 may have had a common origin, being an example of large-scale triggered star formation. While some features of the distribution of the interstellar medium in the region support this interpretation, no definitive detection of an earlier population of massive stars responsible for the triggering has been made thus far. Aims. We have carried out observations looking for red supergiants in the area covered by a giant shell seen in HI and CO centered on galactic coordinates l ∼ 14°5, b ∼ +1° whose emission peaks near the same radial velocity as the bulk of the emission from both giant HII regions, which are located along the shell. Red supergiants have ages in the range expected for the parent association whose most massive members could have triggered the formation of the shell and of the giant HII regions along its rim. Methods. We have obtained spectroscopy in the visible of a sample of red stars selected on the basis of their infrared colors, whose magnitudes are consistent with them being red supergiants if they are located at the distance of M 16 and M 17. Spectroscopy is needed to distinguish red supergiants from AGB stars and RGB stars, which are expected to be abundant along the line of sight. Results. Out of a sample of 37 bright red stars, we identify four red supergiants that confirm the existence of massive stars in the age range between ∼10 and ∼30 Myr in the area. At least three of them have Gaia DR2 parallaxes consistent with them being at the same distance as M 16 and M 17. Conclusions. The evidence of past massive star formation within the area of the gaseous shell lends support to the idea that it was formed by the combined action of stellar winds and ionizing radiation of the precursors of the current red supergiants. These could be the remnants of a richer population, whose most massive members have already exploded as core-collapse supernovae. The expansion of the shell against the surrounding medium, perhaps combined with the overrun of preexisting clouds, is thus a plausible trigger of the formation of a second generation of stars currently responsible for the ionization of M 16 and M 17.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3