Author:
,Aghanim N.,Akrami Y.,Ashdown M.,Aumont J.,Baccigalupi C.,Ballardini M.,Banday A. J.,Barreiro R. B.,Bartolo N.,Basak S.,Benabed K.,Bernard J.-P.,Bersanelli M.,Bielewicz P.,Bock J. J.,Bond J. R.,Borrill J.,Bouchet F. R.,Boulanger F.,Bucher M.,Burigana C.,Calabrese E.,Cardoso J.-F.,Carron J.,Challinor A.,Chiang H. C.,Colombo L. P. L.,Combet C.,Crill B. P.,Cuttaia F.,de Bernardis P.,de Zotti G.,Delabrouille J.,Di Valentino E.,Diego J. M.,Doré O.,Douspis M.,Ducout A.,Dupac X.,Efstathiou G.,Elsner F.,Enßlin T. A.,Eriksen H. K.,Fantaye Y.,Fernandez-Cobos R.,Finelli F.,Forastieri F.,Frailis M.,Fraisse A. A.,Franceschi E.,Frolov A.,Galeotta S.,Galli S.,Ganga K.,Génova-Santos R. T.,Gerbino M.,Ghosh T.,González-Nuevo J.,Górski K. M.,Gratton S.,Gruppuso A.,Gudmundsson J. E.,Hamann J.,Handley W.,Hansen F. K.,Herranz D.,Hivon E.,Huang Z.,Jaffe A. H.,Jones W. C.,Karakci A.,Keihänen E.,Keskitalo R.,Kiiveri K.,Kim J.,Knox L.,Krachmalnicoff N.,Kunz M.,Kurki-Suonio H.,Lagache G.,Lamarre J.-M.,Lasenby A.,Lattanzi M.,Lawrence C. R.,Le Jeune M.,Levrier F.,Lewis A.,Liguori M.,Lilje P. B.,Lindholm V.,López-Caniego M.,Lubin P. M.,Ma Y.-Z.,Macías-Pérez J. F.,Maggio G.,Maino D.,Mandolesi N.,Mangilli A.,Marcos-Caballero A.,Maris M.,Martin P. G.,Martínez-González E.,Matarrese S.,Mauri N.,McEwen J. D.,Melchiorri A.,Mennella A.,Migliaccio M.,Miville-Deschênes M.-A.,Molinari D.,Moneti A.,Montier L.,Morgante G.,Moss A.,Natoli P.,Pagano L.,Paoletti D.,Partridge B.,Patanchon G.,Perrotta F.,Pettorino V.,Piacentini F.,Polastri L.,Polenta G.,Puget J.-L.,Rachen J. P.,Reinecke M.,Remazeilles M.,Renzi A.,Rocha G.,Rosset C.,Roudier G.,Rubiño-Martín J. A.,Ruiz-Granados B.,Salvati L.,Sandri M.,Savelainen M.,Scott D.,Sirignano C.,Sunyaev R.,Suur-Uski A.-S.,Tauber J. A.,Tavagnacco D.,Tenti M.,Toffolatti L.,Tomasi M.,Trombetti T.,Valiviita J.,Van Tent B.,Vielva P.,Villa F.,Vittorio N.,Wandelt B. D.,Wehus I. K.,White M.,White S. D. M.,Zacchei A.,Zonca A.
Abstract
We present measurements of the cosmic microwave background (CMB) lensing potential using the finalPlanck2018 temperature and polarization data. Using polarization maps filtered to account for the noise anisotropy, we increase the significance of the detection of lensing in the polarization maps from 5σto 9σ. Combined with temperature, lensing is detected at 40σ. We present an extensive set of tests of the robustness of the lensing-potential power spectrum, and construct a minimum-variance estimator likelihood over lensing multipoles 8 ≤ L ≤ 400 (extending the range to lowerLcompared to 2015), which we use to constrain cosmological parameters. We find good consistency between lensing constraints and the results from thePlanckCMB power spectra within the ΛCDM model. Combined with baryon density and other weak priors, the lensing analysis alone constrainsσ8Ωm0.25= 0.589 ± 0.020 (1σerrors). Also combining with baryon acoustic oscillation data, we find tight individual parameter constraints,σ8 = 0.811 ± 0.019,H0= 67.9−1.3+1.2km s−1Mpc−1, and Ωm= 0.303−0.018+0.016. Combining withPlanckCMB power spectrum data, we measureσ8to better than 1% precision, findingσ8 = 0.811 ± 0.006. CMB lensing reconstruction data are complementary to galaxy lensing data at lower redshift, having a different degeneracy direction inσ8 − Ωmspace; we find consistency with the lensing results from the Dark Energy Survey, and give combined lensing-only parameter constraints that are tighter than joint results using galaxy clustering. Using thePlanckcosmic infrared background (CIB) maps as an additional tracer of high-redshift matter, we make a combinedPlanck-only estimate of the lensing potential over 60% of the sky with considerably more small-scale signal. We additionally demonstrate delensing of thePlanckpower spectra using the joint and individual lensing potential estimates, detecting a maximum removal of 40% of the lensing-induced power in all spectra. The improvement in the sharpening of the acoustic peaks by including both CIB and the quadratic lensing reconstruction is detected at high significance.