Cluster counts: Calibration issue or new physics?

Author:

Sakr Ziad,Ilić Stéphane,Blanchard Alain,Bittar Jamal,Farah Wehbeh

Abstract

In recent years, the amplitude of matter fluctuations inferred from low-redshift probes has been found to be generally lower than the value derived from cosmic microwave background (CMB) observations in the ΛCDM model. This tension has been exemplified by Sunyaev-Zel’dovich and X-ray cluster counts which, when using theirPlanckstandard cluster mass calibration, yield a value ofσ8, appreciably lower than estimations based on the latestPlanckCMB measurements. In this work we examine whether non-minimal neutrino masses can alleviate this tension substantially. We used the cluster X-ray temperature distribution function derived from a flux-limited sample of local X-ray clusters, combined withPlanckCMB measurements. These datasets were compared to ΛCDM predictions based on recent mass function, adapted to account for the effects of massive neutrinos. Treating the clusters mass calibration as a free parameter, we examined whether the data favours neutrino masses appreciably higher than the minimal 0.06 eV value. Using Markov chain Monte Carlo methods, we found no significant correlation between the mass calibration of clusters and the sum of neutrino masses, meaning that massive neutrinos do not noticeably alleviate the above-mentionedPlanckCMB–clusters tension. The addition of other datasets (baryon acoustic oscillations and Ly-α) reinforces those conclusions. As an alternative possible solution to the tension, we introduced a simple, phenomenological modification of gravity by letting the growth indexγvary as an additional free parameter. We find that the cluster mass calibration is robustly correlated with theγparameter, insensitively to the presence of massive neutrinos or/and additional data used. We conclude that the standardPlanckmass calibration of clusters, if consolidated, would represent evidence for new physics beyond ΛCDM with massive neutrinos.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3