A dispersion excess from pulsar wind nebulae and supernova remnants: Implications for pulsars and FRBs

Author:

Straal S. M.,Connor L.,van Leeuwen J.

Abstract

Young pulsars and the pulsar wind nebulae (PWNe) or supernova remnants (SNRs) that surround them are some of the most dynamic and high-powered environments in our Universe. With the rise of more sensitive observations, the number of pulsar-SNR and PWN associations (hereafter, SNR/PWN) has increased, yet we do not understand to which extent this environment influences the pulsars’ impulsive radio signals. We studied the dispersive contribution of SNRs and PWNe on Galactic pulsars, and considered their relevance to fast radio bursts (FRBs) such as FRB 121102. We investigated the dispersion measure (DM) contribution of SNRs and PWNe by comparing the measured DMs of Galactic pulsars in a SNR/PWN to the DM expected only from the intervening interstellar electrons, using the NE2001 model. We find that a two-σ DM contribution of SNRs and PWNe to the pulsar signal exists, amounting to 21.1 ± 10.6 pc cm−3. The control sample of pulsars unassociated with a SNR/PWN shows no excess. We model the SNR and PWN electron densities for each young pulsar in our sample and show that these indeed predict an excess of this magnitude. By extrapolating to the kind of fast-spinning, high magnetic field, young pulsars that may power FRBs, we show their SNR and PWN are capable of significantly contributing to the observed DM.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3