Seismic characterization of red giants going through the helium-core flash

Author:

Deheuvels S.,Belkacem K.

Abstract

Context. First-ascent red giants in the approximate mass range 0.7 ≲ M/M ≲ 2 ignite helium in their degenerate core as a flash. Stellar evolution codes predict that the He flash consists of a series of consecutive subflashes. Observational evidence of the existence of the He flash and subflashes is lacking. The detection of mixed modes in red giants from space missions CoRoT and Kepler has opened new opportunities to search for such evidence. Aims. During a subflash, the He-burning shell is convective, which splits the cavity of gravity modes in two. We here investigate how this additional cavity modifies the oscillation spectrum of the star. We also address the question of the detectability of the modes, to determine whether they could be used to seismically identify red giants passing through the He flash. Methods. We calculate the asymptotic mode frequencies of stellar models going through a He subflash using the Jeffreys-Wentzel-Kramers-Brillouin (JWKB) approximation. To predict the detectability of the modes, we estimate their expected heights, taking into account the effects of radiative damping in the core. Our results are then compared to the oscillation spectra obtained by numerically calculating the mode frequencies during a He subflash. Results. We show that during a He subflash, the detectable oscillation spectrum mainly consists of modes trapped in the acoustic cavity and in the outer g-mode cavity. The spectrum should thus at first sight resemble that of a core-helium-burning giant. However, we find a list of clear, detectable features that could enable us to identify red giants passing through a He subflash. In particular, during a He subflash, several modes that are trapped in the innermost g-mode cavity are expected to be detectable. We show that these modes could be identified by their frequencies or by their rotational splittings. Other features, such as the measured period spacing of gravity modes or the location of the H-burning shell within the g-mode cavity could also be used to identify stars going through a He subflash. Conclusions. The features derived in this study can now be searched for in the large datasets provided by the CoRoT and Kepler missions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3