Influence of metallicity on the near-surface effect on oscillation frequencies

Author:

Manchon L.,Belkacem K.,Samadi R.,Sonoi T.,Marques J. P. C.ORCID,Ludwig H.-G.,Caffau E.

Abstract

Context. The CoRoT and Kepler missions have provided high-quality measurements of the frequency spectra of solar-like pulsators, enabling us to probe stellar interiors with a very high degree of accuracy by comparing the observed and modelled frequencies. However, the frequencies computed with 1D models suffer from systematic errors related to the poor modelling of the uppermost layers of stars. These biases are what is commonly named the near-surface effect. The dominant effect is thought to be related to the turbulent pressure that modifies the hydrostatic equilibrium and thus the frequencies. This has already been investigated using grids of 3D hydrodynamical simulations, which also were used to constrain the parameters of the empirical correction models. However, the effect of metallicity has not been considered so far. Aims. We aim to study the impact of metallicity on the surface effect, investigating its influence across the Hertzsprung-Russell diagram, and providing a method for accounting for it when using the empirical correction models. Methods. We computed a grid of patched 1D stellar models with the stellar evolution code CESTAM in which poorly modelled surface layers have been replaced by averaged stratification computed with the 3D hydrodynamical code CO5BOLD. It allowed us to investigate the dependence of both the surface effect and the empirical correction functions on the metallicity. Results. We found that metallicity has a strong impact on the surface effect: keeping Teff and log g constant, the frequency residuals can vary by up to a factor of two (for instance from [Fe/H] = + 0.0 to [Fe/H] = + 0.5). Therefore, the influence of metallicity cannot be neglected. We found that the correct way of accounting for it is to consider the surface Rosseland mean opacity. It allowed us to give a physically grounded justification as well as a scaling relation for the frequency differences at νmax as a function of Teff, log g and κ. Finally, we provide prescriptions for the fitting parameters of the most commonly used correction functions. Conclusions. We show that the impact of metallicity through the Rosseland mean opacity must be taken into account when studying and correcting the surface effect.

Funder

Sonderforschungsbereich SFB 881 "The Milky Way System" (subproject A4) of the German Research Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A prescription for the asteroseismic surface correction;Monthly Notices of the Royal Astronomical Society;2023-05-15

2. Solar structure and evolution;Living Reviews in Solar Physics;2021-04-26

3. Surface effects and turbulent pressure;Astronomy & Astrophysics;2021-02

4. Prospects for Galactic and stellar astrophysics with asteroseismology of giant stars in the TESS continuous viewing zones and beyond;Monthly Notices of the Royal Astronomical Society;2021-01-14

5. Age dissection of the Milky Way discs: Red giants in the Kepler field;Astronomy & Astrophysics;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3