Time-dependent molecular emission in IRC + 10216

Author:

Pardo J. R.ORCID,Cernicharo J.ORCID,Velilla Prieto L.,Fonfría J. P.,Agúndez M.,Quintana-Lacaci G.,Massalkhi S.,Tercero B.,Gómez-Garrido M.ORCID,de Vicente P.,Guélin M.,Kramer C.,Marka C.,Teyssier D.ORCID,Neufeld D.

Abstract

Context. The variability in IRC+10216, the envelope of the asymptotic giant branch (AGB) star CW Leo, has attracted increasing attention in recent years. Studying the details of this variability in the molecular emission required a systematic observation program. Aims. We aim to reveal and characterize the periodical variability of the rotational lines from several molecules and radicals in IRC+10216, and to compare it with previously reported IR variability. Methods. We carried out systematic monitoring within the ~80–116 GHz frequency range with the IRAM 30 m telescope. Results. We report on the periodical variability in IRC+10216 of several rotational lines from the following molecules and radicals: HC3N, HC5N, CCH, C4H, C5H, and CN. The analysis of the variable molecular lines provides periods that are consistent with previously reported IR variability, and interesting phase lags are revealed that point toward radiative transfer and pumping, rather than chemical effects. Conclusions. This study indicates that observations of several lines of a given molecule have to be performed simultaneously or at least at the same phase in order to avoid erroneous interpretation of the data. In particular, merging ALMA data from different epochs may prove to be difficult, as shown by the example of the variability we studied here. Moreover, radiative transfer codes have to incorporate the effect of population variability in the rotational levels in CW Leo.

Funder

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3