How common is LBV S Doradus variability at low metallicity?

Author:

Kalari V. M.,Vink J. S.,Dufton P. L.,Fraser M.

Abstract

It remains unclear whether massive star evolution is facilitated by mass loss through stellar winds only or whether episodic mass loss during an eruptive luminous blue variable (LBV) phase is also significant. LBVs exhibit unique photometric and spectroscopic variability (termed S Doradus variables). This may have tremendous implications for our understanding of the first stars, gravitational wave events, and supernovae. A key question here is whether all evolved massive stars passing through the blue supergiant phase are dormant S Doradus variables transforming during a brief period or whether LBVs are truly unique objects. By investigating the OGLE light curves of 64 B supergiants (Bsgs) in the Small Magellanic Cloud (SMC) on a timescale of three years with a cadence of one night, the incidence of S Doradus variables amongst the Bsgs population is investigated. From our sample, we find just one Bsg, AzV 261, that displays the photometric behaviour characteristic of S Doradus variables. We obtain and study a new VLT X-shooter spectrum of AzV 261 in order to investigate whether the object has changed its effective temperature over the last decade. We do not find any effective temperature variations indicating that the object is unlikely to be a LBV S Doradus variable. As there is only one previous bona fide S Doradus variable known to be present in the SMC (R 40), we find the maximum duration of the LBV phase in the SMC to be at most a few 103 yr or more likely that canonical Bsgs, and S Doradus LBVs are intrinsically different objects. We discuss the implications for massive star evolution in low-metallicity environments, characteristic of the early Universe.

Funder

CONICYT-FONDECYT Postdoctoral Award

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3