Investigating the presence of two belts in the HD 15115 system

Author:

Engler N.ORCID,Boccaletti A.,Schmid H. M.,Milli J.,Augereau J.-C.,Mazoyer J.,Maire A.-L.,Henning T.,Avenhaus H.,Baudoz P.,Feldt M.,Galicher R.,Hinkley S.,Lagrange A.-M.,Mawet D.,Olofsson J.,Pantin E.,Perrot C.,Stapelfeldt K.

Abstract

Context. High-contrast instruments like SPHERE (Spectro- Polarimetric High-contrast Exoplanet REsearch) enable spatial resolution of young planetary systems and allow us to study the connection between planets and the dust contained in debris discs by the gravitational influence a planet can have on its environment. Aims. We present new observations of the edge-on debris disc around HD 15115 (F star at 48.2 pc) obtained in the near-IR. We search for observational evidence for a second inner planetesimal ring in the system. Methods. We obtained total intensity and polarimetric data in the broad bands J and H and processed the data with differential imaging techniques achieving an angular resolution of about 40 mas. A grid of models describing the spatial distribution of the grains in the disc is generated to constrain the geometric parameters of the disc and to explore the presence of a second belt. We perform a photometric analysis of the data and compare disc brightness in two bands in scattered and in polarized light. Results. We observe an axisymmetric planetesimal belt with a radius of ~2′′, an inclination of 85.8° ± 0.7° and position angle of 278.9° ± 0.1°. The photometric analysis shows that the west side is ~2.5 times brighter in total intensity than the east side in both bands, while for polarized light in the J band this ratio is only 1.25. We also find that the JH colour of the disc appears to be red for the radial separations r ≲ 2′′ and is getting bluer for the larger separations. The maximum polarization fraction is 15–20% at r ~ 2.5′′. The polarized intensity image shows some structural features inside the belt which can be interpreted as an additional inner belt. Conclusions. The apparent change of disc colour from red to blue with an increasing radial separation from the star could be explained by the decreasing average grain size with distance. The presence of an inner belt slightly inclined with respect to the main planetesimal belt is suspected from the data but the analysis and modelling presented here cannot establish a firm conclusion due to the faintness of the disc and its high inclination.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3