Statistical analysis of UV spectra of a quiescent prominence observed by IRIS

Author:

Jejčič S.,Schwartz P.,Heinzel P.,Zapiór M.,Gunár S.

Abstract

Context. The paper analyzes the structure and dynamics of a quiescent prominence that occurred on October 22, 2013 and was observed by several instruments including the Interface Region Imaging Spectrograph (IRIS). Aims. We aim to determine the physical characteristics of the observed prominence using Mg II k and h (2796 and 2803 Å), C II (1334 and 1336 Å), and Si IV (1394 Å) lines observed by IRIS. In addition we study the dynamical behavior of the prominence. Methods. We employed the one-dimensional non-LTE (departures from the local thermodynamic equilibrium – LTE) modeling of Mg II lines assuming static isothermal-isobaric slabs. We selected a large grid of models with realistic input parameters expected for quiescent prominences (temperature, gas pressure, effective thickness, microturbulent velocity, height above the solar surface) and computed synthetic Mg II lines. The method of Scargle periodograms was used to detect possible prominence oscillations. Results. We analyzed 2160 points of the observed prominence in five different sections along the slit averaged over ten pixels due to low signal to noise ratio in the C II and Si IV lines. We computed the integrated intensity for all studied lines, while the central intensity and reversal ratio was determined only for both Mg II and C II 1334 lines. We plotted several correlations: time evolution of the integrated intensities and central intensities, scatter plots between all combinations of line integrated intensities, and reversal ratio as a function of integrated intensity. We also compared Mg II observations with the models. Results show that more than two-thirds of Mg II profiles and about one-half of C II 1334 profiles are reversed. Profiles of Si IV are generally unreversed. The Mg II and C II lines are optically thick, while the Si IV line is optically thin. Conclusions. The studied prominence shows no global oscillations in the Mg II and C II lines. Therefore, the observed time variations are caused by random motions of fine structures with velocities up to 10 km s−1. The observed average ratio of Mg II k to Mg II h line intensities can be used to determine the prominence’s characteristic temperature. Certain disagreements between observed and synthetic line intensities of Mg II lines point to the necessity of using more complex two-dimensional multi-thread modeling in the future.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3