Significant uncertainties from calibrating overshooting with eclipsing binary systems

Author:

Constantino Thomas,Baraffe Isabelle

Abstract

The precise measurement of the masses and radii of stars in eclipsing binary systems provides a window into uncertain processes in stellar evolution, especially mixing at convective boundaries. Recently, these data have been used to calibrate models of convective overshooting in the cores of main sequence stars. In this study we have used a small representative sample of eclipsing binary stars with 1.25 ≤ M/M < 4.2 to test how precisely this method can constrain the overshooting and whether the data support a universal stellar mass–overshooting relation. We do not recover the previously reported stellar mass dependence for the extent of overshooting and in each case we find there is a substantial amount of uncertainty, that is, the same binary pair can be matched by models with different amounts of overshooting. Models with a moderate overshooting parameter 0.013 ≤ fos ≤ 0.014 (using the scheme from Herwig et al. 1997, A&A, 324, L81) are consistent with all eight systems studied. Generally, a much larger range of f is suitable for individual systems. In the case of main sequence and early post-main sequence stars, large changes in the amount of overshooting have little effect on the radius and effective temperature, and therefore the method is of extremely limited utility.

Funder

Science and Technology Facilities Council

European Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Isochrone fitting of the open cluster M67 in the era of Gaia and improved model physics;Monthly Notices of the Royal Astronomical Society;2024-07-05

2. Fossil Signatures of Main-sequence Convective Core Overshoot Estimated through Asteroseismic Analyses;The Astrophysical Journal;2024-04-01

3. Modelling Time-dependent Convective Penetration in 1D Stellar Evolution;The Astrophysical Journal;2024-03-28

4. Predicting the heaviest black holes below the pair instability gap;Monthly Notices of the Royal Astronomical Society;2024-02-07

5. The mass range of hot subdwarf B stars from MESA simulations;Monthly Notices of the Royal Astronomical Society;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3